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Abstract—
Background. The recent surge in phishing attacks

keeps undermining the effectiveness of the existing anti-
phishing approaches. While state-of-the-art phishing de-
tection solutions can effectively detect phishing across the
web, they mainly focus on automated web crawling and
updating blacklists.

Aim. The time after a phishing website is pub-
lished on the web and remains unprocessed by detection
systems is critical. We aim to reduce this time gap via real-
time phishing detection solution and perform continuous
background processing without extra user interaction.

Method. We propose a real-time on-device solu-
tion that identifies phishing sites immediately when en-
countered by the user. Our reference-based approach ana-
lyzes the visual content of webpages, identifying phishing
attempts through layout analysis, brand impersonation
recognition, and credential input areas detection.

Results. Our case study shows that it’s feasible to
perform background processing on-device continuously.
For web browser phishing detection, the process utilizes
16% of a single CPU core and less than 84MB of RAM
on an Apple M1 while maintaining a high efficiency with
95.7% precision and 87.7% recall, based on a test dataset
of 50K phishing and benign webpages.

Conclusions. Our results demonstrate the po-
tential of on-device, real-time phishing detection sys-
tems to enhance cybersecurity defensive technologies. We
maintained the accuracy of state-of-the-art reference-based
phishing detection solutions while bringing this function-
ality directly to the device.

Index Terms—Phishing, Computer Vision, macOS

1. Introduction

According to the phishing activity trends reports1 from
the Anti-Phishing Working Group (APWG), the num-
ber of phishing attacks keeps increasing year over year,
with 2023 being the worst so far, with 4,987,809 unique
phishing webpages created. While cloud infrastructure
providers like Cloudflare implement phishing detection
on their end2, these measures are not sufficient to pre-
vent phishing attacks at large. Existing phishing detec-
tion methods can be categorized into three categories:

1. https://apwg.org/trendsreports/
2. https://blog.cloudflare.com/2023-phishing-report

blacklist-based, classification-based, and reference-based.
Traditional blacklist-based solutions like Google Safe
Browsing3, although they are effective, do not keep up
with the speed of phishing websites spreading [19],
whose creation and deployment are typically automated.
Classification-based approaches [10], [17], [18] use ma-
chine learning algorithms to analyze URL, HTML, or
other features to classify webpages as phishing or le-
gitimate, including on-device approaches [2], [7], but
lose efficiency against HTML obfuscation techniques and
lack accuracy. In contrast, reference-based approaches [1],
[13], [14] use computer vision and can effectively analyze
webpage appearance to extract information about the dis-
played content, allowing to detect phishing attempts and
form reasonable verdicts.

While the latest reference-based solutions effectively
detect phishing across the web, they focus on automated
web crawling and filling the blacklists. The time after a
phishing webpage is published on the web and remains
unprocessed by detection systems is critical. A phishing
campaign starts spreading malicious URLs just when they
become available, and even within a few minutes, the
campaign may affect many users.

In this paper, we propose a real-time on-device un-
obtrusive anti-phishing solution for macOS and evaluate
in on the case of in-browser phishing website detection,
improving upon the work of [14]. Our approach relies on
macOS-specific system resources and frameworks, which
allows us to significantly reduce computational resource
demand. Processing live screen capturing requires apply-
ing a phishing detection algorithm within a matter of
seconds, ensuring users’ safety. To achieve this, we rely
solely on local machine learning models, eliminating the
need for cloud-based tools. Another important aspect of
using only local models is privacy concerns. By utilizing
local models, user data remains on the device at all times,
ensuring enhanced security and peace of mind for the user,
which aligns with Apple’s approach to privacy protection4.

2. Threat Model

We consider the threat model of PhishIntention [14],
in which the adversary creates a phishing website, im-
personating an official website of a known company and
demanding the personal data of the website visitor. This

3. https://safebrowsing.google.com
4. https://www.apple.com/ua/privacy/approach-to-privacy/
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Figure 1. General workflow of our phishing detection approach

form of phishing is executed through social interaction,
employing psychological manipulations to trick users into
disclosing sensitive security data. Initially, the attacker
conducts a thorough analysis to identify the potential
vulnerabilities within the target demographic essential for
the successful execution of the attack. Subsequently, the
phisher endeavors to establish trust with the target. In the
final phase, the attacker manipulates the scenario to induce
the target to share critical information.

3. Solution

Figure 1 presents a high-level overview of our phishing
detection approach. Similarly to PhishIntention, we focus
on identifying both the intention to impersonate a brand
and the intention to capture user personal information.
The main algorithm consists of three essential steps.
First, we begin with the webpage screenshot analysis
(Section 3.1) to identify layout elements and gain rich
knowledge about webpage content. Second, we classify
the detected logo brand (Section 3.2) that the phishing
webpage tries to impersonate. If we find a brand from
our reference list, we continue to the next step. Third,
we classify the webpage into two categories: if it requires
credentials or not (Section 3.3). This step confirms that an
impersonated phishing website is trying to steal personal
user information. Matching these conditions allows us to
decide whether a webpage is phishing or legitimate.

3.1. Abstract Layout Detection

The main purpose of abstract layout detection is to
determine whether the currently visible webpage con-
tains a brand logo that may be targeted by hackers and
find credential input forms. To achieve this, we analyze
screenshots, identifying different layout elements such as
logos, buttons, inputs, labels, and blocks. We used the
part of the dataset from the section CRP classifier and
AWL detector of [15]. The dataset contains about 9K
webpage screenshots, annotated with regions and types
of layout elements, together with the information about

the webpage layout type (credential required or not) and
the corresponding brand.

Layout Elements Extraction. The DETR (Detection
Transformer) [5] architecture revolutionizes object detec-
tion by employing transformers, to directly learn the rela-
tionships between objects in an image without predefined
anchor boxes. Considering its state-of-the-art performance
in object detection tasks, we have decided to adopt the
DETR model with ResNet-50 [8] backbone. We trained the
model using 8,109 labeled webpage screenshots. During
the training stage, we conducted a comparative analysis
of the DETR model’s performance across varying image
sizes. Table 1 shows the mAP (Mean Average Precision)
accuracy metric compared with processing speed. The
model which works with small images shows good per-
formance, albeit with lower accuracy.

TABLE 1. DETR PERFORMANCE COMPARISON

Image Size Logo mAP [.5:.95] Samples per Second

224x386 37.3 10.5
432x768 46.6 3.9

To safeguard user security, it’s imperative that our
system processes webpage layout analysis at a minimum
rate of once per second. Concurrently, it’s essential to
manage the workload on the CPU effectively to prevent
overutilization, ensuring the system remains responsive
and reliable over extended periods of operation. Achieving
an average processing rate of 3.9 samples per second pro-
vides the capability to analyze a frame in approximately
1/4 seconds. This rapid processing affords us a substantial
interval of 3/4 seconds where the CPU can enter a reduced
activity state, thereby mitigating the risk of overheating
and sustaining performance over time.

Reducing Overlapping Boxes. The NMS (Non-
Maximum Suppression) algorithm is used in object de-
tection to eliminate redundant or overlapping bounding
boxes. By design, the DETR model doesn’t have a built-
in NMS layer. However, given that an abstract webpage



layout should never contain overlapping elements, we inte-
grated the protobuf model from coremltools 5 and merged
it with the main model. DETR consistently generates a
fixed set of 100 bounding boxes for any input image,
which is the default value but can be changed. These
bounding boxes are a representation of potential object
locations within the image (Figure 2).

Figure 2. Potential object locations

NMS systematically identifies and keeps only the non-
overlapping bounding boxes with the highest confidence
scores and makes our outputs flexible, meaning now we
can receive from 0 to 100 boxes instead of a fixed count.
The remaining bounding boxes represent the most likely
object locations within the image (Figure 3).

Figure 3. Refined object locations after post-processing

3.2. Logo Brand Classification

To train logo brand classification model we used brand
logos available in the OCR-aided Siamese model dataset
part of [15]. This part contains 3061 logo images of
277 brands. We utilized the ResNet-18 model, which was
trained on precisely cropped logo layout elements during
the training stage. During the evaluation stage, we utilize
the layout elements identified by the LayoutObjectDetec-
tor (DETR) and select the logo element with the highest
confidence score. Subsequently, the LogoBrandClassifier
(ResNet-18) is applied within the bounds of the detected
logo’s bounding box. Accuracy metrics details are avail-
able in the Section 4.1.2.

3.3. Credential Required Page Classification

Credential required page classification is an important
step to reduce the number of false positive detections.

5. https://apple.github.io/coremltools/docs-guides

To streamline our process and optimize the algorithm
we aimed to utilize already extracted features from the
Abstract Layout Detection step. The DETR model receives
the query image as an input and generates N output vec-
tors. Because output vectors are used to predict the class
and location of the object, they consist of the information
about the object and are suitable for the object-level image
representation [4]. The object detection model was di-
vided into two models, the first is LayoutFeatureExtractor,
which generates object-level features of shape (B, N, H)
where B is batch size, N is a number of output vectors
which is 100 in our case and H is hidden states for each
output which is 256 in our case. The subsequent LayoutO-
bjectDetector model takes these raw features as input and
transforms it into a tensor of shape (B, N, 5) where the first
4 elements are coordinates of the bounding boxes and the
last element is a layout element class. Then, we employ
an additional LayoutClassifier model, which repurposes
the previously extracted object-level features to transform
the task of object detection into image classification. This
transition is facilitated by a custom classification head
(Figure 4), comprising a streamlined multi-layer percep-
tron architecture. The classification head processes and
flattens the object-level features, applies ReLU activation
functions for non-linear processing, and concludes with a
Dropout layer to mitigate overfitting. Resulting in the out-
put of shape (B, 2), this classification head efficiently pro-
vides classification scores, distinctly categorizing pages as
credential required or not. Accuracy metrics details about
this approach are available in the Section 4.1.3.

Figure 4. Classification head for DETR object-level features

3.4. Models Hierarchy

The resulting hierarchy of the final models is illus-
trated in Figure 5, showing the structured organization
and interrelations among the different models. A, B and
C sections represents different training stages. A is a
initial stage where we are training LayoutFeatureExtrac-
tor simultaneously with LayoutObjectDetector on object
detection task. B and C can be trained in parallel, but
only when the previous stage was fully trained. When
we make changes in the A stage, then stage C, which
includes LayoutClassifier, should be retrained because it
fully depends on LayoutFeatureExtractor outputs.

https://apple.github.io/coremltools/docs-guides


Figure 5. Final Models Hierarchy

All models were converted to the Core ML format to
optimize performance through the use of Metal Perfor-
mance Shaders. Core ML6 is a built-in high-level macOS
native framework to integrate machine learning models
into Apple platform applications. It is optimized to per-
form on-device operations by leveraging the CPU, GPU,
and Neural Engine chip while minimizing its memory
footprint and power consumption. Metal7 framework al-
lows applications to directly interact with a device’s GPU.
Machine learning applications leverage Metal’s computa-
tional acceleration for both training and inference tasks.

3.5. macOS Application

We built a native macOS application using Swift pro-
gramming language and integrated all converted Core ML
packages into it. We utilized Screen Capture Kit to access
fullscreen frames. Screen Capture Kit8 is a framework for
screen capturing on macOS. This framework has been
designed with a focus on performance by GPU utilization.
It allows capturing content from various sources such as
displays, applications, and windows, along with associated
audio. A native macOS application continuously runs in
the background, waiting for the active web browser to ap-
pear on the screen. While working with different browsers,
we need to specify the region of actual web content and
ignore the desktop background, address input, or tabs.
The Accessibility Framework9 incorporates an extensive
array of tools and functionalities aimed at enhancing the
accessibility of Apple devices. For developers, this frame-
work offers the opportunity to delve into the accessibility
graph that contains all UI elements and their relations,
providing an additional source of information regarding
the active application’s state, layout, and controls. In our
case, we can inspect the accessibility elements graph of
Safari and find an element called AXWebArea, which con-
tains the actual webpage. By getting its parent, which is
AXScrollArea, we can account for the relative coordinates
of the web area to the inner page scroll offset. These
coordinates are used to crop the fullscreen image and
resize it to 432x768 size, making the image acceptable
for the machine learning models analysis. After this, the
algorithm works exactly as described in Section 3.

6. https://docs.developer.apple.com/documentation/coreml
7. https://docs.developer.apple.com/documentation/metal/
8. https://docs.developer.apple.com/documentation/screencapturekit
9. https://docs.developer.apple.com/documentation/accessibility/

4. Evaluation

We perform a case study, exploring several use aspects
to ensure that our system is optimized for both perfor-
mance and efficiency:
Abstract Layout Detection Accuracy. How does our
model’s logo-detecting efficiency compare to the previous
solutions in terms of both accuracy and processing speed?
Logo Brand Classification Accuracy. How accurately
can we classify the brand of detected logo element?
Credential Required Page Classification Accuracy.
What is the effectiveness of our object-level features-based
classification compared to previous work?
Overall Phishing Detection Performance. Did we man-
age to maintain the overall accuracy of phishing webpage
detection compared to other solutions?
System Resources Usage Efficiency. Can we perform
continuous processing in the background without a major
impact on user workflow?

4.1. Accuracy Metrics

During the accuracy evaluation, we used the same
dataset [15] provided by PhishIntention team to compare
our solution side by side with competitors. We provide
detailed information about each used dataset part at the
beginning of corresponding subsection.

4.1.1. Abstract Layout Detection. We used 901 labeled
webpages from AWL detector dataset part of [15] to mea-
sure how accurate we can find logo elements. The mAP
(Mean Average Precision) measurement is under the IoU
(Intersection over Union) thresholds [0.5:0.95] and shows
slightly worse accuracy compared to the PhishIntention
model, but at the same time, achieves the same results
as Phishpedia [13] model (Table 2). We achieved worse
results than competitors, but our solution is more efficient
in terms of processing speed.

TABLE 2. LOGO DETECTION ACCURACY COMPARISON

Solution Logo mAP [.5:.95] Samples per Second

PhishIntention 59.5 0.7
Phishpedia 46.6 -
Ours 46.6 3.9

4.1.2. Logo Brand Classification. We used 2000 logo
images from OCR-aided Siamese model dataset part of
[15] to measure how accurate we can classify logo brands.
Table 3 presents the accuracy metrics achieved by employ-
ing the ResNet-18 model for logo brand classification. We
achieved the same level of accuracy as PhishIntention and
slightly improved accuracy compared to Phishpedia.

TABLE 3. LOGO BRAND CLASSIFICATION ACCURACY

Solution Test Accuracy

PhishIntention 89.1
Phishpedia 83.5
Ours 90.8

https://docs.developer.apple.com/documentation/coreml
https://docs.developer.apple.com/documentation/metal/
https://docs.developer.apple.com/documentation/screencapturekit
https://docs.developer.apple.com/documentation/accessibility/


4.1.3. Credential Required Page Classification. We
used 901 labeled webpages from CRP classifier dataset
part of [15] to validate the accuracy and robustness of
object-level features based classification (Table 4). The
increment (+3.1%) in test accuracy is particularly notewor-
thy as it indicates a reduction in false positive detections,
which is clearly observed in Figure 7.

TABLE 4. CRP CLASSIFICATION ACCURACY COMPARISON

Solution Train Accuracy Test Accuracy

PhishIntention 99.3 95.0
Ours 99.5 98.1

4.1.4. Overall Phishing Detection. Figure 6 shows the
ROC (Receiver operating characteristic) of different phish-
ing detection solutions in logarithm scale. We evaluated
the algorithm within Experiment dataset (25K benign and
25K phishing webpages) part of [15]. This plot shows
that our solution maintained phishing detection efficiency
while bringing it directly to the device.

Figure 6. ROC of different phishing detection solutions

Figure 7 shows precision and recall within the same
dataset, and additionally false positive rate within Mis-
leading legitimacy dataset part of [15] which contains
3049 benign webpages. In this plot we can observe that
increased accuracy of credential required page classifica-
tion reduced the false positive rate from 5.1% to 3.4%.

Figure 7. Accuracy metrics of different phishing detection solutions

4.2. System Resources Usage

We measured performance on two different devices:
MacBook Pro 2020 M1 and 4K iMac 2020 Intel Core i7
3.8 GHz. Initial tests were performed without imposing
a frame rate limit, enabling the application to analyze
each frame as it becomes available. The results shown
in Table 5 highlight the performance difference between
Apple’s M1 and Intel’s Core i7 processors, with the former
demonstrating better optimization in terms of both CPU
usage and RAM consumption.

TABLE 5. SYSTEM RESOURCES USAGE

Device CPU Usage RAM Consumption

Apple M1 58% 440 MB
Intel Core i7 74% 860 MB

To meet the criteria for unobtrusive background pro-
cessing, we restrict the frame rate to a single frame per
second. This measure is posited to strike an optimal bal-
ance between enhancing user security and minimizing the
consumption of system resources. We observe (Table 6)
a significant improvement in CPU utilization attributed to
increased periods of processor idleness.

TABLE 6. SYSTEM RESOURCES USAGE (FPS LOCK)

Device CPU Usage RAM Consumption

Apple M1 20% 440 MB
Intel Core i7 11% 820 MB

Quantization10 is a process of clamping the model
weights. We quantized all models from a default 32-bit
floating point to a smaller but less accurate 16-bit floating
point. Model quantization yields substantial enhancements
in frame processing time, CPU utilization, bundle size,
and, most notably, RAM consumption (Table 7).

TABLE 7. SYSTEM RESOURCES USAGE (QUANTIZED MODELS)

Device CPU Usage RAM Consumption

Apple M1 16% 84M
Intel Core i7 8% 450M

Subsequently, we checked how quantization affects
overall phishing detection efficiency in the same way as
described in Section 4.1.4. We found that this optimiza-
tion technique effectively halves the model’s size while
maintaining a minimal impact on its accuracy (Table 8).

TABLE 8. QUANTIZATION IMPACT ON ACCURRACY

Floating-point Precision Recall

32-bit 95.8% 87.8%
16-bit 95.1% 87.1%

10. https://huggingface.co/docs/optimum/concept guides/quantization

https://huggingface.co/docs/optimum/concept_guides/quantization


5. Related Work

Reference-based phishing webpage detection. State-of-
the-art approaches, such as PhishIntention [14], Phish-
pedia [13], and VisualPhishNet [1], primarily focus on
automatically identifying phishing websites on the internet
using web crawlers rather than relying on local infer-
ence. Solutions, such as DynaPhish [16] and KnowPhish
Detector [12], further improve accuracy and extend the
applicability of reference-based approaches but still are
cloud-first. Our work addresses the performance aspect of
such approaches, bringing them locally to the user devices
without compromising on phishing detection accuracy.

On-device phishing detection. Both industry practition-
ers and academia researchers have recently begun to ex-
plore this attack vector more actively, though, to the best
of our knowledge, the current industry focus is on SMS
phishing (smishing) prevention. Recent works from Sam-
sung R&D Institute focus on smishing: Harichandana et
al. [3] introduce an on-device pipeline for smishing detec-
tion, and J. W. Seo et al. [20] present a privacy-preserving
SMS classifier. The privacy-preserving aspect of on-device
solutions is also explored by researchers in recent works
on SMS spam and phishing detection [6], [21].

6. Discussion

Proactive Protection. Our solution aims to automatically
detect phishing attacks, eliminating the need for additional
user interaction. There’s no need for users to press extra
buttons or copy and paste suspicious URLs for detection.
In stressful situations, users may lack the necessary at-
tention to analyze URLs and page content thoroughly.
Hence, our solution operates proactively, safeguarding
users without their active intervention.

On-device Processing. Our final metrics of system re-
source usage indicate that our solution can operate contin-
uously in the background without a noticeable impact. It is
important to highlight that CPU usage represents a fraction
of the total available capacity: given that the Apple M1
has 8 cores, this means we are utilizing 16% of the 800%
total capacity available across all cores. In comparison
to other applications, this level of resource consumption
is equivalent to maintaining three active Safari browser
tabs (which typically consume about 5% depending on
the website) or conducting an active Zoom call (which
can use about 22% during a voice call and about 41%
during video call).

Browser Extensions. In our approach, we have access
to the image of the whole screen but select a region of
interest, which we currently limit to an active browser, per-
forming any screen recognition tasks within this window.
In the use case of browser window content tracking, this
approach has a direct advantage over relying on browser
extensions, as it is browser-agnostic and requires minimal
adjustment for working with different browsers: adding
Google Chrome support on the Safari-compatible base
required up to 50 lines of code only. For the users, the
browser-agnostic approach has the direct advantage of
lessening the burden of browser extension management.

Users as Sensors. Our solution combines with the tradi-
tional method of keeping a blacklist of phishing websites.
The algorithm can be extended to perform URL matching
with a blacklist at the very beginning. If there is no
match in the blacklist, we can perform the main part of
the algorithm described in this paper. Upon identifying a
phishing attempt, both the user and our centralized system
are alerted. The primary advantage of this method is that it
leverages thousands of users as sensors rather than relying
on multiple web crawlers to search for phishing attempts
on the web, aligning with the human-as-a-security-sensor
(HaaSS) [9] approach.

7. Limitations

The main limitations of our proposed solution stem
from the specifics of the use of computer vision techniques
for object detection on the webpage. Our approach only
identifies phishing websites that display both a visible
brand logo and a credential form on the same page. If
either of these elements is missing or becomes hidden
when a user scrolls or magnifies, our solution will fail.

Our solution doesn’t protect users from phishing at-
tacks for unknown brands. In case of the need for a well-
known brand logos database update, machine learning
models should be retrained and updated on the user device.
Such an approach also fails when the company rebrands.
For example, from Facebook to Meta or from Twitter to
X. A recent study [11] has also shown a possible attack on
techniques that rely on brand logo recognition, for which
we are not robust.

8. Conclusions and Future Work

This work argues for the potential of on-device, real-
time phishing detection systems to enhance cybersecu-
rity defensive technologies. We demonstrate that mod-
ern devices are capable of leveraging machine learning
models efficiently, sustaining fast processing speed while
conserving system resources. A straightforward future
work direction is adapting our solution for iOS devices.
This transition is expected to be relatively smooth, as
the Core ML packages required for the transfer are fully
compatible with the iOS platform.

In our case study, we focused on webpage phishing de-
tection. However, given our capability to capture the entire
screen, our potential for advancement is not limited here.
A complex solution could orchestrate various algorithms
tailored to specific Regions of Interest. For example, in
web browsers, we can process webpages according to
the introduced algorithm, in email clients, we can detect
phishing emails, in messengers, we can detect smishing.
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Appendix

Object-level Features Based Classification. We tried to
make BrandClassifier similar to the LayoutClassifier and
reuse DETR object-level features to transform it into a
tensor of shape (B, 16), which should have probabilities
of belonging logo to some brand (Other or Apple, Ama-
zon, Netflix, etc.). This approach, while yielding a high
precision, suffers from a significantly lower recall rate.
To address this issue, we experimented with the Over-
sampling and Undersampling techniques. Oversampling
involves increasing the number of instances in the class
with fewer instances, while Undersampling reduces the
number of instances in the class with more instances.
We observed a significant improvement in the model’s
overall performance (Table 9), as evidenced by an F1 score
that reached 90%. However, due to limited accuracy, we
decided not to use this model in the final solution.

TABLE 9. LOGO BRAND CLASSIFICATION ACCURACY ACROSS
DIFFERENT TRAINING TECHNIQUES

Technique F1 Precision Recall

Normal 0.83 0.95 0.79
Oversampling 0.79 0.77 0.87
Undersampling 0.90 0.98 0.86

Webpage Screenshot Analysis Example. In Figures 8
and 9, we illustrate the analysis of the official company
webpage and phishing webpage detection by our solution.



Figure 8. Official DHL website screenshot. This example shows the analysis of the official DHL website, showing the identification of various
elements. Every button and input was accurately detected, and the logo was confidently identified as belonging to DHL. The website layout requires
credentials, but the authenticity of dhlsameday.com verifies that it is not a phishing site.

Figure 9. Phishing DHL webpage screenshot. Here, we encountered a layout markedly distinct from the previous example. Nevertheless, our evaluation
methodically identified all buttons and inputs, and the layout classifier categorized this page as credential required. The detection of a logo was a
key finding, with the classifier confirming with 100% confidence its affiliation with DHL. However, a closer inspection revealed a critical oversight:
the site is not the official DHL webpage but a phishing attempt.
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